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Purpose: To report the results of the first international pooled analysis of patients with glioblastoma trea-
ted with intraoperative radiotherapy (IORT) in addition to standard of care therapy.

Methods: Data from 51 patients treated at five centers in Germany, China and Peru were analyzed. All
patients underwent tumor resection followed by a single application of IORT (10-40 Gy, prescribed to
the applicator surface) with low-energy X-rays. Thereafter, standard adjuvant radiochemotherapy and
maintenance chemotherapy were applied. Factors of interest were overall survival (OS), progression-
free survival (PFS), local PFS (L-PFS; defined as appearance of new lesions <1 cm to the cavity border)
and distant PFS (D-PFS; lesions >1 cm). The same endpoints were estimated at 1-, 2- and 3-years using
the Kaplan-Meier method. Additionally, rates and severity (as per Common Terminology Criteria for
Adverse Events Version 5.0) of radionecrosis (RN) were analyzed.

Results: The median age was 55 years (range: 16-75) and the median Karnofsky Performance Status was
80 (20-100). At a median follow-up of 18.0 months (2-42.4), the median OS, PFS, L-PFS and D-PFS were
18.0 months (95% CI: 14.7-21.3), 11.4 months (95%Cl: 7.58-15.22), 16 months (95%Cl: 10.21-21.8) and
30.0 months (95%CI: 18.59 - 41.41), respectively. The estimated 1-, 2- and 3-year OS, PFS, L-PFS and D-
PFS were 79.5%, 38.7% and 25.6%; 46.2%, 29.4%, and 5.9%; 60.9, 37.9%, and 12.6%; and 76.7%, 65.0%, and
39.0% respectively. First progression occurred locally in only 35.3% of cases. Grade 1 RN was detected
in 7.8% and grade 3 in 17.6% of the patients. No grade 4 toxicity was reported and no treatment-
related deaths occurred.

Conclusion: Compared to historical data, this pooled analysis suggests improved efficacy and safety of
IORT with low-energy X-rays for newly diagnosed glioblastoma. Prospective data is warranted to confirm
these findings.

© 2019 The Author(s). Published by Elsevier B.V. Radiotherapy and Oncology xxx (2019) xxx-xxx This is
an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Glioblastoma (GB) represents the most frequent primary malig-
nancy of the brain in adults, accounting for more than half of all
gliomas [1]. Survival times are still narrow and range between 1
and 3 years [2-6]. Even patients with favorable risk factors, such
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as young age, high Karnofsky performance status (KPS) and hyper-
methylation of the 0Of-methylguanine-DNA-methyltransferase
(MGMT) promoter suffer from tumor recurrence, usually occurring
14-17 months after therapy [2,6].

Despite technical advances, including neurophysiology-,
neuronavigation- and fluorescence-guided gross total resection
(GTR); local tumor re-growth remains the most frequent pattern
of failure [7-10]. As tumors start repopulating the cavity immedi-
ately after surgery and even during radiotherapy [11,12], we pro-
posed to overcome this spatial and temporal miss using
additional low-energy intraoperative radiotherapy (IORT) [13],
which is applied immediately after surgery and, due to the unique
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2 Intraoperative radiotherapy for glioblastoma

physical characteristics of low-energy photons, restricted to the
surgical margin.

Recently a prospective, single-arm phase I/Il study was con-
ducted to determine the safety and efficacy of IORT with low-
energy X-rays added to standard of care adjuvant therapy
(radiochemotherapy and maintenance chemotherapy) [14]. It
was shown that the addition of IORT was not only tolerable, but
also yielded a median local progression-free survival of roughly
18 months despite a high portion of patients with post-operative
residual disease (13 of 15) and unmethylated MGMT promoters
(10 of 15) in the trial [15].

The encouraging data from this trial has not only prompted the
initiation of a randomized phase III trial (NCT02685605), but also a
variety of single-arm mono-institutional studies. We here present
an international pooled analysis of patients treated with low-
energy IORT at five institutions from three different countries, in
addition to standard of care therapy. It resembles the largest cohort
of patients that have received this therapy so far.

Methods

Patients from five centers (located in Germany, Peru and China)
were retrospectively included in this analysis. All patients were
diagnosed with suspected GB/high-grade glioma in pre-treatment
magnetic resonance imaging (MRI) and subsequently underwent
surgery. Only patients with confirmed pathology diagnosis of GB
were included in the analysis. IORT was delivered as described pre-
viously after frozen sections supported the preliminary diagnosis
of glioblastoma [14,15]. In brief, 50-kV X-rays (INTRABEAM, Carl
Zeiss Meditec AG, Oberkochen, Germany) were applied using
spherical applicators (size range 1.5-5 cm) at dose levels ranging
from 10 to 40 Gy prescribed to the surgical margin (0 cm depth,
i.e. the applicator surface). Following surgery, all patients received
standard-of-care adjuvant therapy, consisting of 60 Gy intensity-
modulated or volumetric-modulated arc (IMRT-VMAT) external-
beam radiotherapy (EBRT) and concomitant temozolomide
chemotherapy followed by maintenance temozolomide
chemotherapy (2). Thereafter, response was assessed at 8-12 week
intervals using multiparametric MRI, and updated RANO criteria
[16].

Factors of interest were median overall survival (OS), median
progression-free survival (PFS), median local PFS (L-PFS, with local
recurrence being defined as tumor recurrence within 1 cm to the
cavity margin), median distant PFS (D-PFS, with a distant recur-
rence being defined as any new lesion occurring >1 cm from the
cavity margin), and radionecrosis rates (RNR). Multiparametric
MRI included Perfusion sequences to account for pseudoprogres-
sion, according to clinical criteria and local follow-up protocol. In
addition, estimated cumulative rates for these endpoints were cal-
culated for 12, 24 and 36 months using the Kaplan-Meier method.
Severity was assessed based on Common Terminology Criteria for
Adverse Events (CTCAE) version 5.0. All statistical analyses were
performed using SPSS (V. 24.0; IBM, Armonk, NY).

Results

Patients characteristics

A total of 51 patients were treated with IORT in addition to
standard-of-care. The median age was 55years (range: 16-
75 years) and the median KPS was 80 (20-100). MGMT promoter
hypermethylation was absent in 39.2% of patients. IDH1 was found
to be wild type in 76.5% and mutated in 9.8% of patients. Satellite
lesions were present in 15.7% of the patients. Depending on local
practices, site-specific protocols and/or constraints of organs-at-
risk (mainly chiasm, optical nerves, brain stem) applied doses ran-

ged from 10 to 40 Gy, with most of the patients receiving 10 Gy.
Dose distribution curves are shown in Figs. 1 and 2 for a 3 cm
diameter Spherical applicator. Adjuvant EBRT was applied in all
but one patient and 44 of 51 patients received temozolomide-
based chemotherapy (Table 1).

Treatment outcomes

At a median follow-up of 18 months (range: 2-42.4 months),
the median OS was 18.0 months (95% confidence interval [CI]:
14.7-21.3 months; Fig. 3a). The OS rates estimated at 12, 24, and
36 months were 79.5%, 38.7% and 25.6% respectively. The median
(overall) PFS was 11.4 months (95%Cl: 7.6-15.2; Fig. 3b) and the
PFS rates at 12, 24, and 36 months were 46.2%, 29.4%, and 5.9%.
The median L-PFS was 16 months (95%Cl: 10.2-21.8; Fig. 3c), with
annual estimated L-PFS rates of 60.9, 37.9%, and 12.6%. The median
D-PFS was 30 months (95%Cl: 18.6-41.4, Fig. 3d), with estimated
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Fig. 1. Isodose distribution in parenchyma for 30 Gy prescribed at applicatofs
surface. Delivery of ~20% of total prescribed dose after 1cm, might vary with
applicator size.
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Fig. 2. DVH graphic with organs-at-risk dose.

Table 1

Baseline patient characteristics and treatments. Data are either N or median unless
stated otherwise. Legend: MGMT, O6-methylguanine-DNA-methyltransferase; IDH1,
Isocitrate dehydrogenase 1; IORT, intraoperative radiotherapy; EBRT, external-beam
radiotherapy.

Characteristics N/Median (Range) %
Median Age (years) 55 (16-75)
Median KPS 80 (20-100)
Gender
Male 28 549
Female 23 45.1
Satellite Lesions'
Present 8 15.7
Absent 42 823
Unknown 1 2
MGMT
Methylated 17 333
Unmethylated 20 39.2
Unknown 14 275
IDH1 Status
IDH1 wild type 39 76.5
IDH1 R132H mutation 5 9.8
Unknown 7 13.7
IORT Dose*
10 Gy 23 45.1
20 Gy 9 17.6
30 Gy 15 294
40 Gy 4 7.8
IORT delivery time (min) 17 (5-58)
Adjuvant EBRT*
Yes 50 98
No 1 2
Chemotherapy*
Yes 44 86.3
No 3 5.9
Unknown 4 7.8

 Defined as separate T1-contrast-enhancing lesion within the edema visible in T2.
* Prescribed to the applicator surface.

" Total dose 60 Gy, given in 20 fractions.

# Includes concomitant (75 mg/kg/d) and maintenance (150-200 mg/m2, 5/28
scheme) temozolomide chemotherapy.

rates of 76.7%, 65.0%, and 39.0% per year. First progression occurred
locally in only 35.3% of cases (Table 2).

Toxicity profile

Radionecrosis was judged to be present in 13 patients (25.5%),
which is in line with previous findings in a phase I/II trial (15).
RN was scored to be of grade 1 RN in 4 patients (7.8%) and of grade
3 in 9 patients (17.6%). There was no significant relation between
RN and OS, PFS and L-PFS; however, a difference in D-PFS was
found, favoring patients that developed RN against those who did
not, as no patient from this group (n=9) developed distant pro-
gression and 15 from the non-radionecrosis (n =42) group pre-
sented this toxicity (p = 0.047). No grade 4 or 5 toxicity related to
IORT was found in this cohort and no treatment-related deaths
occurred (Table 3).

Discussion

Surgery resembles one of the most important components of
glioblastoma therapy and novel technology may allow to identify
and resect almost all macroscopically visible tumor [17]. Although
it appears sound that there is a direct correlation between the
amount of tumor removed and outcome [ 18], surgery-related neu-
rological deficits may ultimately counteract all benefits [19], which
often results in “maximum safe” than “gross total” resections.
However, even after (macroscopic) complete resection of glioblas-
toma, a considerable number of tumor cells will remain in the cav-
ity [20]. These cells are capable to rapidly re-populate the margin
as demonstrated in comparative analyses of early post-operative
and pre-radiotherapy scans [11,12].

Few improvements of glioblastoma therapy were achieved over
the past decades: Patients with favorable (epi)genomic profile
[21,22] benefit from the addition of temozolomide (2) and lomus-
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Fig. 3. Kaplan-Meier curves for Overall Survival (a), Progression-free survival (b), Local recurrence-free survival (c), and Distant recurrence-free survival (d).

tine (6) to radiotherapy. Alternating electric fields may delay
tumor growth by inhibiting cell division independent of the molec-
ular subtype [23]. The general approach of external-beam radio-
therapy (EBRT), however, has not significantly changed since the
1980s, where a regimen of 60 Gy given in 30 fractions of 2 Gy
was established [24,25]. Although some technological advances
(such as intensity-modulated radiotherapy) increased the confor-
mity of EBRT, dose escalation studies yielded conflicting results
in terms of overall survival benefit [26-30].

Intraoperative radiotherapy does not require extra radiation to
travel through healthy tissue as compared to EBRT, thus allowing
for local dose escalation at the site of most likely recurrence [34-
36]. In contrast to intraoperative electron radiotherapy (I0eRT),
that may leave several aspects of the cavity uncovered [31,32], a
more intuitive approach is to modify the dose distribution and to
spherically cover the cavity with low-energy X-rays [33]. In a
recent phase I/II trial, this novel approach of local dose escalation
yielded a median progression free survival of 11.2 months and a
median local progression-free survival of 14.3 months, with iso-
lated distant recurrence as predominant pattern of failure [15].

The pooled analysis here presented confirms these findings in a
larger patient collective and suggests superiority compared to his-

torical data as the median PFS in the benchmarking EORTC trial
was 6.9 months (2) with no notable improvements in standard-
of-care arms in contemporary studies [4,5]. Despite the limitations
of our study, the reported OS rate at 3 years (25.6%) reinforces the
improved outcomes hypothesis, as the aforementioned seminal
trial reported similar outcomes after 2 years follow-up (26.5%).
One of the main concerns about achieving a radical dose at
brain tissue is the development of radionecrosis. This side effect
has been the limiting burden for dose escalation, although
brachytherapy dose-escalation reports suggested less severe com-
plications rates than only EBRT-based approaches, with incidences

ranging from 4 to 27%, [26,37]. The rate of radionecrosis in this
analysis (25.1%) was seen to be higher than after standard of care
(5=10%)'[38] but lowerffhan in the INTRAGO trial (33%) or after

interstitial brachytherapy (~50%) [39]. However, in the light of a
potential correlation between radionecrosis and improved out-
come [40] and the availability of a drug (bevacizumab) that highly
effective terminates symptomatic radionecrosis [41], we consider
this side effect as manageable and thus acceptable given the ben-
efit of the treatment. This results interesting as we found a signif-
icant correlation between RN and improvement of D-PFS
(p=0.047), suggesting a local immune response boosting;
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Table 2
Clinical outcomes after IORT plus standard of care.
Endpoint N %
Progression
Any progression 36 70.6
First site local 18 353
First site distant 18 353
No progression 15 294
Any local failure
Yes 28 54.9
No 23 45.1
Distant failure
Yes 15 294
No 36 70.6
Vital signs/cause of death
Deceased 37 72.5
Tumor progression 21 41.2
Other causes 12 235
Not reported 4 7.8
Alive' 14 27.5
Salvage Therapy
Yes* 24 47.1
No 27 529

" At a median follow up 18 months.
¥ Salvage therapies included re-surgery (n = 5 patients), re-irradiation (n = 9), other
systemic therapies (n =18)

Table 3
Incidence of radionecrosis (RN).
Radionecrosis N %
any RN 13 25.2
Severity'
Grade | 4 7.8
Grade II 0 0
Grade Il 9 17.6
Grade IV 0 0
Grade V 0 0

 Assessed based on Common Terminology Criteria for Adverse Events (CTCAE)
version 5.0.

although these results should be taken carefully, as the number of
patients included in this subgroup (n = 9) might generate a bias in
the outcomes.

In conclusion, compared to historical data, this analysis of the
largest cohort of patients so far suggests that IORT with low-
energy X-rays added to standard-of-care therapy in glioblastoma
improves local control and survival without major side effects. A
recently initiated multinational randomized phase III trial is cur-
rently testing the impact of IORT added to standard of care versus
standard of care alone (ClincalTrials.gov ID NCT02685605).
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